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Abstract 

Measurements from angular rate sensors and accelerometers allow 
inertial navigation. While this report focuses on accelerometers 
(since they are conceptually simpler), all the discussion is directly 
applicable to angular rate sensors. In fact, estimation techniques 
were developed to analyze angular rate sensors attached to a body 
subjected to sinusoidal motion. System developers need to be able 
to predict performance of a system, based on the component 
specifications supplied by the manufacturers and signal processing. 
Given knowledge of the noise level, the time correlation of the 
noise, the number of wavelengths processed, and the sampling rate, 
a model is proposed to predict the accuracy of the estimated 
parameters of a sinusoidal input. It is hoped that this model will 
allow the designer to quickly determine the required specifications 
for a particular application. 
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FREQUENCY ESTIMATION FROM ACCELEROMETER MEASUREMENTS 

1. Introduction 

Measurements from angular rate sensors and accelerometers allow inertial 
navigation. While this report focuses on accelerometers (since they are 
conceptually simpler), all the discussion is directly applicable to angular rate 
sensors. In fact, estimation techniques were developed to analyze angular rate 
sensors attached to a body subjected to sinusoidal motion. System developers 
need to be able to predict the performance of a system, based on the component 
specifications supplied by the manufacturers and signal processing. Given 
knowledge of the noise level, the time correlation of the noise, the number of 
wavelengths processed, and the sampling rate, a model is proposed to predict the 
accuracy of the estimated parameters of a sinusoidal input. It is hoped that this 
model will allow the designer to quickly determine the required specifications for 
a particular application. 

A simulation was developed to create data for the desired situations. Two 
estimates are pursued. First, an estimation technique that identifies the dominant 
frequency1 in the signal is discussed. The second frequency estimation technique 
introduces new estimation criteria based on an inner product. A model of 
estimation error is presented, and some statistical concerns are addressed. 

The frequency of the sinusoid, the power/amplitude, and the phase are the 
parameters of interest. Notice that when the signal of interest is known to be 
sinusoidal, the bias or offset from zero is of no concern. Once the frequency is 
found, the bias is the average of the signal over a whole number of wavelengths. 
It does not affect the estimates of the sinusoidal parameters. Any time an 
accelerometer has a sinusoidal input, the bias can be estimated. It may be 
possible to estimate bias for accelerometers installed in artillery rounds under the 
assumption that the coning motion is sinusoidal. First, an accelerometer must be 
aligned so that it is in the coning plane, and the bias must be calculated based on 
the assumption that the signal is sinusoidal. Then, in-flight calibration can be 
achieved via a mechanism to rotate the accelerometer into the axis of motion. 

The frequency is the parameter of greatest interest. If the estimate of frequency is 
wrong, our predictions will deviate at the rate of the frequency estimation error. 
By having a "bound" on the error in frequency estimation, it is possible to 
determine the duration of useful prediction for an estimate. Errors in phase will 
cause a shift in the sinusoid and do not change with time. Similarly, estimates of 

The dominant frequency is the frequency that yields the largest amplitude or power when the 
signal is projected onto it. 



the power or magnitude of the sine wave will be similar to the actual wave and 
will not change over time. 

2. Simulation 

The signal simulation is in SIMULINK®, an icon-based software product that 
allows system analysis. An accelerometer model was developed which consisted 
of the input, a bias added to the input, and a time-correlated noise process added 
to the input. A SIMULINK® block for a time-correlated noise process was 
developed for the accelerometer model. This simple model is justified if the 
accelerometer is assumed to have been calibrated. Scale factor corrections and 
predetermined biases are assumed to be properly accounted. The model 
represents all the un-modeled biases as a single bias and adds noise to the signal. 
A correlated noise process is used. Noise is correlated if the current noise value 
depends on the value in the recent past. The time correlation indicates the 
duration of the dependence. A first order differential equation can be used to 
model correlated noise. 

The input to the accelerometer was chosen to be a sinusoidal function. By setting 
the parameters of the simulation noise level, time correlation, and step size, one 
can generate the desired data sets. Step size will determine the number of points 
generated per unit time. This simulation did not represent the internal workings 
of the accelerometer. The model is shown in Figure 1, and Figure 2 shows the 
accelerometer block. Output from the model includes the acceleration, velocity, 
and distance. The model blocks labeled 1/s are integrators. 
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Figure 1. Signal Generation Model. 
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Figure 2. Accelerometer Model. 

3. Signal Processing 

In this case, both the power spectrum and a Fourier analysis are not that helpful 
since the quantities of interest are the parameters of the sinusoid with the greatest 
power. In Fourier analysis, an orthogonal basis of sinusoids is used to represent 
the signal. This set will capture all the energy of the signal; however, it will 
usually miss the actual frequency of the signal. The set of orthogonal sinusoids is 
discrete and if the frequency of interest falls in between the Fourier frequencies, it 
is difficult to estimate precisely. 

A set of routines was developed to find the frequency of maximum power. The 
method used is similar to either an ideal receiver or the method used for wavelets. 
Wavelets use an orthogonal set of functions to represent a signal. They are useful 
when a few of the wavelets can capture most of the information in the signal. 
Generating a good set of orthogonal functions for a particular problem can be a 
difficult task. In this case, the only information of interest is that associated with 
the sinusoid of the greatest power; thus, all other information in the signal can be 
ignored. Since the signal is known to be sinusoidal, the time delay and amplitude 
can be ascertained by projections of the signal onto sine and cosine waves. Note 
that different frequencies require different time intervals in order to maintain the 
orthogonality of the sine and cosine functions. First, a routine to find the power 
and phase of a specified frequency was developed. This routine was then used to 
map the power surface within a region of the frequency space. It was observed 
that power, as a function of frequency, was a smooth function in the region of 
maximum power. An iterative search routine using a quadratic estimator was 
designed to find the frequency of maximum power. 



A second estimation method for frequency was also devised. This method is 
based on the observation that sine and cosine functions of the desired frequency 
are orthogonal. The inner product of the signal projected onto the sine and cosine 
will be zero if the proper frequency is selected. By calculating these quantities for 
different frequencies, one can ascertain the desired frequency. The estimation 
process then becomes a zero crossing problem. This estimation criterion will be 
referred to as the "inner product criterion." As in the previous case, only 
frequencies completing a whole number of cycles over a selected data set could 
be directly evaluated. 

Methods to select the parameter values can be based on other criteria. Usually, a 
criterion that is a function of the residuals is selected. The parameters can be 
chosen so that the sum of the residuals is zero. Minimization of the Hl, H2, or H- 
infinity norms of the residuals can be achieved. These norms correspond to the 
sum of the absolute value of the residuals, the sum of the squares of the residuals, 
and the maximum residual. 

4. Performance Model 

In the model, estimation error is assumed to be a function of noise level, time 
correlation, number of wavelengths processed, and the number of data points per 
wavelength. The error is expected to be infinite if no datum is processed; thus, at 
levels of zero for both wavelengths processed and number of data points, the 
predicted error should be infinite. Error is expected to be zero if there is no noise 
in the accelerometer; thus at zero noise level, the estimation error should be zero. 
A multiplicative model with unknown exponents was considered to be of the 
correct form. Negative exponents will indicate that the error becomes smaller 
when the value of an independent variable increases, while positive exponents 
will cause the error to increase as the magnitude of an independent variable 
increases. The number of wavelengths and samples per wavelength should have 
negative exponents, while the noise level should have a positive exponent. These 
assumptions can be used as a logical verification of the model after the estimation 
process. For this case, least squares can be used to estimate the exponents of the 
independent variables via the log transformation of the estimation error (y) as the 
dependent variable. Using Xs to represent the independent variables, the model 

_ a     ß     6     $ 
y ~ X\ X2 X3 X4 

transforms to the model 

ln(y) = ln(c) + a\n(x) + ßln(x2^ + ^ln(0C3) + 0WxJ +ln^ • 

Note for this model that if the dependent variable were raised to a power, this 
would result in a multiplication of each of the estimated parameters. Typically, 
for a statistical interpretation to be appropriate, the residual error term should 



have a Gaussian distribution. Statistically, the goal is to estimate the average 
error and be able to make a statement of the form "95% of the errors are less than 
X for these values of the independent variables." 

5. Statistical Issues 

The model will be used in the original domain. In the log domain, small errors 
have large (negative) magnitudes, while large errors have smaller magnitudes. A 
least squares estimation will tend to give more influence to numbers of greater 
magnitude; however, it is desirable for the model to more accurately predict large 
errors. When the log model is transformed into the original domain, the sum of 
the residuals is no longer zero. This can be corrected by adjusting the parameters 
using a Newton-Raphson method to find the proper value of the parameters. 
Another approach is to minimize a function of the residuals. Typically, the sum 
of the absolute values, the sum of the squares, or the greatest deviation is 
considered as a possible metric to be minimized. A collection of routines was 
developed to minimize the selected metric. 

After the parameters are adjusted to minimize a criterion, a chi-square test can be 
used to test the fit of the model. Through the formation of the ratio of the squared 
estimation error over the model-predicted variance, a chi-square random variable 
is formed. By summing these and comparing the sum to the proper critical 
values, one can test the null hypothesis (i.e., that the proposed model is adequate 
for the observed data). Note that the model derivation is independent of the chi- 
square test. Another possibility would be to search for the parameters that give 
the best fit to a chi-square distribution (50% level). This latter method would be a 
form of maximum likelihood estimation. 

6. Discussion of Estimation Criteria 

The inner product criterion and the maximum power criterion for estimating the 
frequency were compared. Over the region observed, the power curve had a 
quadratic component (see Figure 3); however, increasing the amount of data or 
number of wavelengths processed also increased the curvature of the power curve. 
This increased curvature is not modeled well by quadratic functions; higher order 
estimators become necessary. As shown by Figure 4, the inner product plot 
appears to be sinusoidal and has a steep slope when it crosses zero. The linear 
model for the inner product criterion remains valid as the number of wavelengths 
processed increases. For the inner product criterion, an increase in the number of 
wavelengths processed increases the slope as it crosses zero. Noise tends to 
flatten the curves for both criteria; however, the steep slope of the inner product 



criterion is more robust.  Perturbations because of noise should result in a lower 
estimation error if the inner product criterion is used. 

1.4 

Figure 3. Power Curve. 
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Figure 4. Inner Product Curve. 



7. Bias 

Even without the addition of a deterministic bias, a bias is present in the data. 
There are two elements that cause this undefined bias. First, the phase of the 
signal at the beginning of processing will cause a small but persistent offset. 
Suppose the accelerometer signal is a sine wave. The integration of the signal 
over the first 180 degrees yields the maximum positive value, and integration over 
the next 180 degrees returns the result to zero; thus, the velocity term is always 
positive. See Figure 5 for assistance in visualizing the deterministic bias. The 
integral of the velocity will then digress from the true value. Through this 
argument, it is evident that the phase of a sinusoidal signal will cause a bias in its 
integral. Next, recall that the integration operator is known to be linear. The 
integral of a signal plus noise can be evaluated from the sum of the integral of the 
signal (as previously discussed) and the integral of the noise. The integral of 
noise is a random walk. A random walk has an equal chance of increasing or 
decreasing at any point in time; the best estimate of its future value is its current 
value. Any offsets attributable to the random walk cause a bias in the velocity 
term. This component of the bias cannot be predicted a priori and will change as 
a function of time. System performance will be determined by how well the 
effects of this random walk can be minimized. High levels of noise and long time 
correlation increase the magnitude of the bias caused by a random walk. Figures 
6 and 7 provide examples. 
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Figure 5. No Noise Response. 
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Figure 6. Low Noise Condition. 
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Figure 7. High Noise Condition. 



8. Discussion of Variables 

The four variables considered (number of points per wavelength, number of 
wavelengths, noise strength, and time constant of the noise) were investigated in 
ranges considered to be useful for inertial navigation. 

Although it was possible to estimate frequency with ten observations per cycle, 
the estimation methods were not always stable in this region. At 20 observations 
per wavelength, the estimation methods were stable, and it was apparent that an 
increase in the number of observations beyond 20 per wavelength did not improve 
the estimation fidelity. This led to the conclusion that the variable (observations 
per wavelength) was asymptotic and had reached a near maximum value around 
20 observations per wavelength. In the future, the estimation routines could be 
enhanced for better performance in regions of few observations per wavelength. 

The time constant of the noise process indicates the auto-correlation time of the 
noise. At high noise levels, the effect of a long time constant is to decompose the 
sinusoid into segments and increase the bias in the random walk, making it 
difficult to estimate any of the sinusoidal parameters precisely. Based on 
observations of accelerometer and angular rate sensors, the time correlation is 
small. Using a time correlation of 0.01 or larger had no discernible effects on 
parameter estimation. The model for the time constant is a first order differential 
equation. In some cases, the time constant can be thought of as a means of 
removing the effects of un-modeled differential equations. 

The variables accounting for the noise level and the number of wavelengths 
processed were retained in the model.   The final model containing these three 
parameters is 

a    ß 
y = cXiX2

f 

Notice that the noise (XO should have a positive exponent, and as the noise value 
goes to zero, the error should also approach zero. The number of wavelengths 
(X2) should have a negative exponent. The error should approach infinity as the 
number of wavelengths goes to zero. This provides for interesting behavior 
around the point (0,0). Fortunately, the region of interest does not contain this 
point. Obviously, the model is only considered for positive values of noise and 
number of wavelengths processed. Figure 8 is included to help the reader 
visualize the model. 
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Figure 8. Error Function. 
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9. Fitting Model Parameters 

Using the accelerometer model, we collected 60 observations. Noise levels were 
set in relation to the sinusoid amplitude. At noise levels of 0.2, 0.4, 0.8, and 1.2, 
the estimation routine processed two and four wavelengths of data. For the 0.8 
and 1.2 noise levels, six wavelengths of data were also processed. Six 
observations were collected for each pair of conditions. 

In the first part of the fitting process, the model was transformed to the log 
domain, and regression provided the initial parameter estimates. Two routines 
were devised to search the parameter space. The first routine calculates the HI, 
H2, H-infinity norms, and the sum of the residuals. The second routine calculates 
the p-value for a chi-square test, based on the assumption that the model gives the 
standard deviation of the estimation process. With this software, a heuristic 
search method was used to find a set of parameters that were acceptable for both 
the norm and chi-square criteria. 

The exponent of the noise term was determined to be close to 1 and was set to 1. 
The model then is linear along the noise dimension. The exponent of the variable 
for wavelength was -5/3. The decrease in error along the wavelength dimension 
is dramatic. The third parameter is a factor that adjusts the overall height of the 
surface; its value is 0.1083. 

10 



10. Model Testing 

Two assumptions were used to test the model. First, estimation errors were 
assumed to have a normal distribution. Next, the model was assumed to be true. 
The value given by the model was the standard deviation of the error for that 
point. Under these assumptions, the observed error over the model standard 
deviation forms a chi-square variable with one degree of freedom when it is 
squared. 

The model acceptance test consisted of 20 observations. The noise values were 
randomly chosen from the range 0.1 to 1.2; the number of wavelengths was a 
randomly selected integer from the interval (2,7). The chi-square variables were 
formed and summed. The ensuing chi-square test with 20 degrees of freedom 
gave a p-value of .38 for the model. The p-value is the probability, when the 
assumptions are true, that if the test were repeated, the new test value would 
exceed the observed value. The observed value is in the region where we fail to 
reject the assumptions. Failure to reject the assumptions does not imply that the 
model is correct—only that based on the data, a rare event did not take place. For 
engineering purposes, the model was accepted as adequate for predicting the 
standard deviation of the frequency estimator. 

11. Concluding Remarks 

Accelerometer bias was shown to have both a deterministic and random 
component. This is in addition to biases caused by electronics, un-modeled 
temperature effects, and so forth, and indicates that despite all efforts to control or 
calibrate an accelerometer, there will be a random bias caused by the random 
walk effect of the integrated noise. This random walk effect is statistically 
proportional to the strength of the noise. In stressful environments with lots of 
vibration, it may be a major factor in accelerometer bias. 

Although this investigation focused on frequency estimation, the same procedure 
can be used to estimate amplitude and phase errors. These models would be of 
the same form. Although the exact same analysis is pertinent for angular rate 
sensors, the accuracy of the amplitude estimate is extremely important in the 
interpretation of angular rate measurements. 

The model validation technique is an application of statistical theory to quantify 
the performance of a model. The area of model evaluation is important to all 
areas of research. The technique developed here should be investigated in more 
detail. The current use, while logically correct, reverses the traditional role of the 
null hypothesis. 

11 



In this case, the signal was a sinusoid corrupted by noise. The approach taken 
was to project the signal onto sinusoids and search the parameter space to find the 
best set of parameters. Two methods were used to define "best"; the first was to 
use maximum power, and the second method used an inner product criterion. In 
situations when the researcher knows the functional form of the signal, the signal 
can be projected onto that function and the desired parameters can be defined as 
those that yield the most power. In this case, the researcher can pretend that he or 
she has a set of wavelets, but only the first one will have useful information, 
allowing the others to be ignored. 

With flight data, all frequencies change during the flight. Frequency can be 
tracked via either of the estimation techniques discussed. If a model of the 
frequency change were available, a Kaiman filter could be made to increase 
tracking fidelity. In many applications requiring frequency estimation, such as 
radar, banks of filters are used, and the filter with the greatest output is assumed 
to have the correct frequency. Both frequency estimation techniques mentioned 
here can be implemented to improve performance and reduce the number of filters 
required. 
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